## Introduction

Many colleges and universities require undergraduates to take an introductory statistics course. Poor engagement, low content confidence, and limited learning in required, undergraduate, introductory statistics classes is a problem.

## Attitudes Toward Statistics

Many people worldwide have negative attitudes toward quantitative research methods (Murtonen, 2005).
Anxiety about statistics courses at university is well documented (Pretorius \& Norman, 1992; Townsend, Moore, Tuck, \& Wilton, 1998). Mathematical, statistical, and quantitative subjects are perceived to
be more difficult than other subjects (Murtonen \& Lehtinen, 2010).

## First Day Experience

Teaching advice frequently stresses importance of first day on motivation and achievement (Lang, 2022; Anderson, Mcguire, \& Cory, 2011) Positive first-day experiences result in higher motivation and grades than negative first-day experiences (Wilson \& Wilson, 2007).

## Study Skills

Good study behaviors predict academic success (Crede \& Kunce) 2008; Karpicke \& Roediger, III, 2008).
Many students need to learn basic cognitive principles to become effective college-level learners. (Chew S.; Karpicke \& Roediger, III,

This study explores the effect of first day of class activities and study skills instruction on students' statistics anxiety and grades.

## Statistics Anxiety Scale (SAS) ${ }_{a=92}$

## The SAS measures three constructs

1. Examination Anxiety $\alpha=.87$

Anxiety experienced when taking statistics exams.
2. Asking for Help Anxiety $\mathrm{a}=.82$

Anxiety experienced when asking the course teacher, another atatis
3. Interpretation Anxiety $\alpha=.92$

Anxiety experienced when interpreting statistical data and understanding the formulation used in statistics.

- Likert-type scale 1-5.

High scores suggest that students experience high anxiety in this construct.


## Results

Exam Anxiety at Midterm was significantly lower for the Dice and Study Skills group than the Dice group $t(145)=1.98, p=.03$


Open-ended Survey Question
What are your thoughts on learning statistics with the "flipped" model of instruction?
Responses were coded as Negative, Neutral and Positive. Students' opinions were more negative at week 7 than on Day $1, X^{2}(8, n=136)=$ $22.85, p=.004$ showing a dramatic $340 \%$ increase in negative responses.

| Day 1 <br> Overall Statistics Anxiety in 3 Sections of INFO <br> Fall <br> 2022 $(n=75)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Construct | Mean | Standard <br> Deviation | Lower <br> Bound | Upper <br> Bound |
| Exam Anxiety | 3.60 | .96 | 3.89 | 3.83 |
| Assistance <br> Anxiety | 2.17 | .88 | 1.97 | 2.37 |
| Interpretation <br> Anxiety | 2.34 | .94 | 2.14 | 2.55 |


| Midterm <br> Overall Statistics <br> Anxiety <br> Fall 3 Sections of INFO <br> 2022 <br> $(n=71)$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Construct | Mean | Standard <br> Deviation | Lower <br> Bound | Upper <br> Bound |
| Exam Anxiety | 3.39 | .96 | 3.17 | 3.62 |
| Assistance <br> Anxiety | 2.08 | .87 | 1.88 | 2.29 |
| Interpetation <br> Anxiety | 2.35 | .93 | 2.13 | 2.57 |

No statistically significant differences in midterm exam, final exam, or overall course grades. No statistically significant differences in student evaluations of the course or teacher.

## Methods

subjects ( $n=71$ ) - undergraduate students in three sections of a mandatory, ten-week introductory statistics course.
Course is taught using a "flipped" design where passive content (video lectures, textbook readings, practice activities) is delivered asynchronously, and active learning activities based on constructivist theory are delivered in the classroom shifting the focus from knowledge transmission to knowledge
construction (Centre For Teaching Excellence, n.d.).

## Experimental Design

Sections randomly assigned to treatments and control.
SAS questions plus qualitative questions administered anonymously via Qualtrics survey.
T 1 and T 2 completed dice challenge activity on day 1 of class T2 had study skills videos added to their course lecture videos (chew s., n.d.). Researcher did not tell students videos were there. Questions added to dail quizzes to encourage watching the videos.
All sections completed survey for participation points after 1st class. All sections completed the same survey for participation points in week 7 .
Midterm exam scores and final grades for all three sections were compared.

Qualitative Survey Questions
What aspects of your statistics course excite you?
What challenges do you expect to experience in your statistics course?
What are your thoughts on learning statistics with the "flipped" model of instruction?

Subjects - INFO 1020 Students

| Group | n | Treatment | First Day <br> Survey \# | Midterm <br> Survey \# |
| :---: | :---: | :---: | :---: | :---: |
| T1 | 25 | Control | T1 | T1 |
| T2 | 25 | Dice and study <br> skills | T1 | T2 |
| T3 | 21 | Dice | T3 | T3 |

Dice Challenge Activity
Before instruction, random pairs of students given two dice and a probability worksheet. Students tried to solve the worksheet problems. After 10 minutes, the instructor introduced the probability unit by working the she

## Conclusions

Students' opinions of learning in a flipped classroom fell dramatically from Day 1 to Week 7 of the ten-week course but the cause of the decline is unknown. One possible explanation is dissatisfaction with the pedagogy. Another is hat by week 7 students have grappled wind

Study skills instruction may have helped students feel less anxious about taking exams as evidenced by the significant difference in Examination. However, the effect may have than embedding them with course content videos.
Treatment group 2 (T2) was inadvertently given the link to the Day 1 survey for T1. Consequently, the Day 1 results are group (T2). It is impossible to separate results. This may mask meaningful results of the challenge activity.
In spite of limited significant quantitative results, the classroom climate seemed energized and collegial in all three sections. Perhaps, the interventions lead to improved classroom community which in turn supports the conclusion that active earning activities are useful to engage students in what - to them - is a very challenging course. Open-ended, end-ofcourse, stude then

## Future Directions

Analyze "What aspects of your statistics course excite you?" question from survey.
Analyze "What challenges do you expect to experience in your statistics course?" question from survey.
Explore challenge activities at start of each unit, not just start of class Explore community building activities to increase engagement with the class.

## References

## 

Cente For Teaching Exelleneo











 McGinley, 1.1. $\mathbf{1}$. ones B .


 Tend






